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ABSTRACT

With the recognition of obesity as a global health crisis, researchers have devoted greater effort
to defining and understanding the pathophysiological molecular pathways regulating the biology
of adipose tissue and obesity. Obesity, the excessive accumulation of adipose tissue due to
hyperplasia and hypertrophy, has been linked to an increased incidence and aggressiveness of
colon, hematological, prostate, and postmenopausal breast cancers. The increased morbidity
and mortality of obesity-associated cancers have been attributed to higher levels of hormones,
adipokines, and cytokines secreted by the adipose tissue. The increased amount of adipose tis-
sue also results in higher numbers of adipose stromal/stem cells (ASCs). These ASCs have been
shown to impact cancer progression directly through several mechanisms, including the
increased recruitment of ASCs to the tumor site and increased production of cytokines and
growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates
that obesity induces alterations in the biologic properties of ASCs, subsequently leading to
enhanced tumorigenesis and metastasis of cancer cells. This review will discuss the links
between obesity and cancer tumor progression, including obesity-associated changes in adipose
tissue, inflammation, adipokines, and chemokines. Novel topics will include a discussion of the
contribution of ASCs to this complex system with an emphasis on their role in the tumor
stroma. The reciprocal and circular feedback loop between obesity and ASCs as well as the
mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance
tumorigenesis will be discussed. STEM CELLS 2015;33:318-326

carcinomas [3]. Furthermore, additional meta-
analysis confirmed an association between
obesity and several other cancers in both men
and women, including endometrial, prostate,
and esophageal cancers, malignant melanoma,
hematological malignancies, and large B-cell
lymphomas [4-13]. Clearly, a better under-
standing of the mechanism(s) by which obesity
enhances tumorigenesis is both a necessity
and a priority.

TyPES OF ADIPOSE TISSUE AND THEIR ROLE IN
(0]:14 3

INTRODUCTION

More than one-third of adults in the U.S. are
obese, which is a number that has increased
significantly in the last 10 years [1]. According
to the World Health Organization statistics,
obesity rates across the globe have almost
doubled since 1980. The distinction between
being overweight and obese is determined by
the body mass index (BMI), calculated based
on the height and weight of an individual. An
individual with a BMI of 24.9-29.9 is consid-
ered overweight, while a person with a BMI
greater than 30.0 is defined as obese. On a
global scale, 1.4 billion adults meet the

requirements for being overweight and nearly
500 million adults meet the requirements for
being obese worldwide [2].

In 2007, the World Cancer Research Fund
used meta-analytic procedures to study the
effects of obesity on cancer incidence and
mortality. They found that higher levels of adi-
posity were associated with increased rates of
colorectal, postmenopausal breast, and renal
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Historically, endocrinologists have divided adi-
pose tissue into two categories, white adipose
tissue (WAT) or brown adipose tissue (BAT).
WAT is further subdivided into unique depots
based on the location and its function: visceral
(around the organs) and subcutaneous
(between the muscle and the dermal fascia).
The visceral WAT stores excess energy but also
provides physical protection to the organs. For
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instance, perirenal fat is superficial to the renal capsule and
protects the kidney from trauma. In contrast, the primary
function of subcutaneous WAT is to store excess triglycerides
and release free fatty acids during extended periods of fast-
ing, starvation, or exercise. It has also been suggested that
subcutaneous WAT functions as a buffer during intake of die-
tary lipids to protect the organs against the lipotoxicity of
free fatty acid oxidation [14].

In contrast, BAT oxidizes chemical energy to produce heat,
through the actions of mitochondrial uncoupling protein-1
(UCP1), as a defense against hypothermia [15]. Human babies,
who lack body hair or a protective coat, have significant
brown fat depots, presumably to provide heat in the cold
environment encountered following birth. As humans age,
BAT levels decrease. However, recent studies have identified
an additional type of adipose tissue that is a hybrid between
WAT and BAT, termed beige or brite (brown/white) adipose
tissue. Adults who have been exposed to chronic cold condi-
tions form brown fat-like depots characterized by enhanced
thermogenesis located in the supraclavicular and neck region
[16-21]. These brown fat-like depots maintain high levels of
expression of UCP1 and appear morphologically similar to
brown fat. These brown fat-like depots have been located in
regions where white adipose depots are generally found [22,
23]. Unlike classic BAT, which is derived from a myogenic fac-
tor 5 (Myf5) muscle-like cellular lineage, the beige/brite adi-
pocytes lack Myf5 expression [24].

While all adipose depot sites can increase in volume, only
an accumulation of WAT increases the risk of developing vari-
ous diseases, including heart disease, cancer, metabolic syn-
drome, and stroke [25-28]. Extensive reviews have focused on
the association of obesity with heart disease, metabolic syn-
drome, and stroke [29-35]. The focus of this review will be on
the relationship between increased adiposity, the biology of
adipose stromal/stem cells (ASCs), and tumorigenesis.

ADIPOSE TiSSUE AND ASCs

Once considered solely as an energy reservoir or thermal
insulator, adipose tissue is now being recognized as a complex
endocrine organ involved in energy homeostasis, feeding,
reproduction, and inflammation. Adipose tissue is heterogene-
ous, containing adipocytes and cells from the stromal vascular
fraction, namely ASCs (15%—-30%), endothelial cells (10%—
20%), pericytes (3%—5%), granulocytes (10%—15%), monocytes
(5%—-15%), and lymphocytes (10%—15%) [36].

Among the cell types within the stromal vascular fraction,
ASCs have recently been the focus of research because they
have the potential to differentiate into mesenchymal tissue
such as osteocytes, chondrocytes, and adipocytes, are immune
privileged, and have immunomodulatory properties. Because
they do not express MHC class Il molecules or costimulatory
molecules [37, 38], ASCs are immune privileged. ASCs have a
complex biology with regard to their anti-inflammatory prop-
erties; these cells inhibit natural killer cell activation, resulting
in impaired cytotoxicity processes [37]. ASCs reduce the prolif-
eration of B cells, reduce immunoglobulin production, and
suppress B-cell functions [39]. These features make ASCs ideal
for tissue engineering and regenerative medicine, since these
cells have the potential to differentiate into many cell types
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and immunomodulate the immune system without causing
rejection by the host or the grafted cells [40-45].

OBESITY-RELATED ALTERATIONS TO ADIPOSE TISSUE AND THE
IMPACT ON CANCER

Obesity alters the physiological function of adipose tissue,
resulting in chronic inflammation, skewed secretion of adipo-
kines, and changes to the biology of ASCs. Adipose tissue
expansion in obesity increases the distance between the
enlarging adipocytes and their vasculature, leading to localized
hypoxia. Adipocytes can grow up to 100-200 um in diameter
and subsequently exceed the typical diffusion distances of
oxygen into tissue [46, 47]. The oxygen content in expanded
adipose tissue is close to zero at 100 um distances from the
vasculature, implying that increased adipocyte size and adipo-
cyte number result in significant hypoxia [47]. Furthermore,
other studies have shown that despite the substantial increase
in adipose tissue associated with obesity, neither cardiac out-
put nor total blood flow to the adipose tissue is increased
[48, 49]. In obese mice, the reduced blood perfusion and
hypoxia appear to be specific to WAT [50]. The lack of oxygen
to the adipose tissue results in the activation of hypoxia-
induced factor 1-alpha and increased angiogenesis; however,
the response is insufficient to compensate for the growing
adipocytes, which leads to chronic low-grade inflammation
[51, 52]. It is postulated that this chronic low-grade inflamma-
tion induces the excess secretion of proinflammatory cyto-
kines, chemokines, protease, and protease inhibitors, such as
tumor necrosis factor-alpha (TNF-x), interleukin 6 (IL-6),
monocyte chemotactic protein 1 (MCP-1), leptin, and plasmin-
ogen activator inhibitor type 1 (PAI-1), which lead to adipose
tissue dysfunction [53, 54]. The role that each of these factors
plays in obesity and cancer will be presented in more detail.

TNF-a

TNF-o. has an important role in the adaptive response of the
immune system and other organ systems. TNF-o is an endoge-
nous pyrogen that can induce fever, apoptotic cell death,
inflammation as well as inhibiting tumorigenesis. However, dys-
regulation of TNF-o has been implicated in a variety of human
diseases, including cancer, because it activates the nuclear fac-
tor kappa-light-chain-enhancer of activated B cells pathway,
leading to the expression of a variety of inflammation-related
genes [55, 56]. TNF-a appears to contribute to the develop-
ment of the tissue architecture necessary for tumor growth
and metastasis [57]. It has also been shown to induce the pro-
duction of other cytokines, angiogenic factors, and matrix met-
alloproteinases (MMPs), which may drive the survival and
metastasis of tumor cells [58]. Furthermore, long-term expo-
sure of hormone receptor positive breast cancer cells to TNF-o
induces an epithelial-to-mesenchymal transition (EMT), a pro-
cess by which tumor cells lose their cell-to-cell adhesion and
gain migratory properties that facilitate metastasis [59].

IL-6

Similarly, IL-6 is an important regulator of immune cell growth
and differentiation. Recent studies demonstrate that IL-6 regu-
lates chronic inflammation, which can create a cellular microen-
vironment conducive to cancer growth [60]. High concentrations
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of circulating IL-6 in obese patients correlate with an increased
risk of developing tumors. The production of the IL-6 receptor/
ligand complex activates both Janus kinase (JAK) and the signal
transducer and activator of transcription 3 (STAT3) pathways,
which are key regulators of cell proliferation and apoptosis.

MCP-1

MCP-1 has been shown to recruit macrophages in both obesity
and cancer [61, 62]. MCP-1 levels in adipose tissue and plasma
are increased in genetically obese diabetic (db/db) mice and in
wild-type mice fed a high fat diet [63]. With respect to cancer,
stromal MCP-1 is involved in both tumor progression and
metastasis [64]. Treatment of immunodeficient mice bearing
human breast cancer cells with a neutralizing antibody to MCP-
1 resulted in a significant reduction in macrophage infiltration,
angiogenic activity, and overall tumor volume [64].

Leptin

In an obese state, leptin resistance causes hyperphagia,
increased adipose tissue volume, and hyperleptinemia, as the
body attempts to compensate for the resistance [65-67];
however, increasing leptin secretion is ineffective. In fact, it
has been shown that the plasma concentration and mRNA
expression of leptin in adipose tissue are directly related to
the severity of obesity [68, 69]. Hyperleptinemia is also par-
tially responsible for the chronic low-grade inflammation asso-
ciated with obesity. Excess leptin results in enhanced T cell
and macrophage activation as immune cells respond to the
leptin in the microenvironment. Leptin also increases the
expression of TNF-u, reactive oxygen-species production, MCP-
1 expression, and endothelial cell proliferation and migration.
These factors all increase cancer cell growth and mobility.

PAI-1

PAI-1 is a serine protease inhibitor (serpin) produced by many dif-
ferent cell types, including endothelial cells, stromal cells, and adi-
pocytes. PAI-1 affects adipocyte differentiation and the expression
of PAI-1 increases with higher levels of adiposity [70]. PAI-1 princi-
pally inhibits urokinase plasminogen activator (uPA), which acts as
an inducer of fibrinolysis and extracellular matrix degradation
[71]. PAI-1 expression is also associated with increased tumor cell
invasion and metastasis [72], and some studies have shown that
PAI-1 is a poor prognostic indicator for a number of cancers,
including breast cancer and colon cancer [72, 73].

While most of the studies to date have focused on adipose
tissue as a whole, few studies have investigated the impact of
obesity on the ASCs. Due to the chronic low-grade inflamma-
tion within microenvironment of the adipose tissue, the biology
of the ASCs within these depots may be altered. Studies have
shown that obesity diminishes ASC differentiation potential
along adipogenic and osteogenic lineages, indicating a possible
reduction in stem cell properties in cells conditioned by obese
environments [74, 75]. Other studies have indicated that ASCs
from obese individuals promote luminal breast cancer cell pro-
liferation, angiogenesis, and metastasis [76—78].

ASCs IN THE TUMOR STROMA

The tumor stroma is composed of numerous cell types
(immune system cells, fibroblasts, myofibroblasts, and vascular
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cells). One of the key cell types is the cancer-associated fibro-
blast (CAF). The number of CAFs increases with the aggres-
siveness of the cancer [79-82]. CAFs demonstrate similar
characteristics as myofibroblasts and express alpha-smooth
muscle actin (¢-SMA), tenascin-C, nestin, neural/glial antigen
2, and platelet-derived growth factor receptor-alpha [83, 84].
It has been shown that ASCs are recruited to the tumor, tran-
sition into CAFs, and then integrate into the stroma [85-87].
Recent data indicate that ASCs that have been exposed to
cancer cells or tumor cell conditioned media express tenascin-
C and a-SMA, which are characteristic of CAFs, and may pro-
vide some insights into their role in the tumor stroma [87].

The recruited ASCs can also stimulate tumor growth, pro-
mote angiogenesis, and increase cancer cell invasion [88—90].
When ASCs are exposed to exosomes from breast cancer cells,
they increase the expression of tumor-promoting factors, such
as stromal cell-derived factor 1 (SDF-1), vascular endothelial
growth factor (VEGF), chemokine ligand 5 (CCL5), platelet-
derived growth factor D, and transforming growth factor beta
(TGF-p) [85-87, 91-93]. This phenomenon correlated with the
increased expression of TGF-f receptors and phosphorylation
of key factors in the TGF-f receptor-mediated SMAD pathway
in ASCs [85, 86]. Consequently, these ASCs promote cancer
cell growth and stimulate metastasis [94]. In vivo studies have
confirmed that simultaneous coinjection of primary breast
cancer and ASCs into nude mice results in the integration of
ASCs into the tumor stroma, thereby increasing tumor volume
and increasing the vascularity of the tumor [95-97].

Other studies have demonstrated that ASCs stimulate
invasion and metastasis of cancer cells. Recent evidence dem-
onstrated that ASCs enhanced the migration of several types
of cancer: breast, colon, prostate, gastric, and head and neck
tumors [95, 98-101]. Data from Muehlberg et al. indicated
that implanting spheroids formed with breast cancer cells and
ASCs into nude mice increased the number of lung metasta-
ses [102]. Together, these studies suggest that cancer cells can
recruit ASCs to the tumor microenvironment, which in turn
increases cancer cell proliferation and metastasis.

MECHANISMS OF ASC-INDUCED ALTERATIONS IN CANCER CELLS
AND TUMORIGENESIS

Breast Cancer

While many studies have described the interaction between
ASCs and breast cancer cells, only recently have studies exten-
sively explored the mechanism by which this interaction
occurs. ASCs stimulated by cancer cells secrete a wide range
of cytokine, chemokines, and growth factors that, in turn,
increase the proliferation of breast cancer cells in an ASC/can-
cer cell reciprocal feedback loop (Fig. 1) [74]. More specifi-
cally, cancer cells activate ASCs to secrete SDF-1, which then
binds to its receptor CXCR4 on breast cancer cells and induces
cellular proliferation through protein kinase B (AKT), extracel-
lular signal-regulated kinases 1/2 (ERK1/2), and Janus kinase-
signal transducer and activator of transcription 3 (JAK2-STAT3)
[102]. Potter et al. showed that ASCs induced the expression
of chemokine (C-C motif) ligand 2 (CCL2), E26 transformation
specific (ETS) domain-containing protein (ELK1), Ezrin (VIL2),
and MMP-11 in primary epithelial cells and breast cancer cell
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Model of the tumor-promoting effects of CAFs formed from ASCs. (A): Cancer cells secrete a wide range of cytokines, che-

mokines, and growth factors that play a role in the recruitment of several different cell types into the tumor. The tumor microenviron-
ment is composed of cancer cells, endothelial cells, ASCs, CAFs, and immune cells. (B): A reciprocal and circular feedback loop between
cancer cells and ASCs is initiated by the secretion of cytokines from cancer cells. These cytokines activate ASCs, resulting in the conver-
sion of ASCs into CAFs as noted by the increased expression in a-SMA, tenascin-C, nestin, neuro-glial antigen 2, and PDGFR-o. In turn,
the CAFs secrete cytokines and chemokines that alter cancer cells, leading to an increase in the number of cancer cells, increased inva-
sive potential of cancer cells, and potentially increased chemoresistance of cancer cells. (C): Cancer cells recruit ASCs into the microen-
vironment and induce their transformation into CAFs. This cellular conversion results in secretion of cytokines, chemokines, growth
factors, and enzymes that enhance cancer cell proliferation, induce EMT, and the metastasis of cancer cells to distant sites. Abbrevia-
tions: a-SMA, alpha-smooth muscle actin; ASCs, adipose stromal/stem cells; CAFs, cancer-associated fibroblasts; PDGFR-o, platelet-

derived growth factor receptor-alpha.

lines, leading to increased tumor volume, neoangiogenesis,
and epithelial cell migration [103].

A primary role for ASCs in the microenvironment is their
ability to induce EMT and promote metastasis. Devarajan
et al. found that ASC conditioned media induced expression
of fibronectin, a-SMA, and vimentin in breast cancer cells,
which are markers of EMT [91]. These results correlated with
increased expansion of CD44"M&"/CD24'°% cancer stem cells
and anchorage-independent growth of cancer cells, leading to
EMT of cancer cells [91]. Furthermore, Pinilla and colleagues
described the association between CCL5 secretion by ASCs
and elevated levels of MMP-9 activity within the tumor micro-
environment, leading to increased tumor invasion. ASC-
derived IL-6 and IL-8 have also been shown to increase migra-
tion, invasion, and anchorage-independent growth of breast
cancer cell lines, including MDA-MB-231, T47D, and MCF7
cells [84, 100].

Colorectal Cancer

While limited information on the effects of ASCs on colorectal
cancer cells exists, studies have provided some insights on the
interactions between ASCs and colorectal cancer cell prolifera-
tion, neoangiogenesis, and efficacy of chemotherapy agents.
ASCs that underwent conversion to CAFs have been shown to
release a variety of growth factors and cytokines, including
SDF-1, IL-6, and VEGF that enhance the growth of colorectal
cancer cells (Fig. 1) [104-106]. Similar to breast cancer cells,
SDF-1 elicits its effects through activation of CXCR4. This SDF-
1/CXCR4 axis regulates phosphoinositide 3-kinase (PI3K/AKT),
mitogen-activated protein kinase (MAPK), and uPA cascades,
which ultimately alters chemotaxis, angiogenesis, and tumor

www.StemCells.com

metastasis in colorectal cancer cells [104-106]. Additional
cytokines and chemokines secreted by ASCs into the tumor
microenvironment increase the survival of the cancer cells
[107]. For example, studies have demonstrated that ASCs
secrete sufficient VEGF and IL-6 to induce neoangiogenesis,
which is necessary to provide sufficient nutrients to the grow-
ing tumor [108]. Inhibition of VEGF or IL-6 leads to reduced
angiogenesis and inhibition of tumor growth [109].

ASCs can also induce chemoresistance in colorectal cancer
cells. These cells have been shown to become activated dur-
ing treatment with platinum analogs and secrete factors that
protect tumor cells against a variety of chemotherapeutic
drugs [110, 111]. Distinct platinum-induced polyunsaturated
fatty acids in minute quantities induced cancer cell resistance
to a broad spectrum of chemotherapeutic agents [111]. Addi-
tional studies suggest that the secretion of interleukin 17 (IL-
17) from ASCs, in response to chemotherapeutic agents, leads
to chemoresistance and thus increases the number of colo-
rectal cancer cells [112].

Prostate Cancer

In prostate cancer, ASCs have been implicated in altering the
gene expression profile of cancer cells, inducing a more
aggressive phenotype, and increasing angiogenesis within the
tumor (Fig. 1) [92]. The number of ASCs was increased in can-
cer patients compared to prostatic nodular hyperplasia
patients [99]. The ASCs are converted into CAFs and provide
nutrients and support for the growing tumor. Ribeiro et al.
found that adipose tissue and ASCs exposed to conditioned
media from PC3 cells (prostate cancer cell line) had an altered
adipokine expression profile, including increased osteopontin,
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Figure 2. Model for the role of obesity in promoting tumorigenesis and cancer progression. The accumulation of adipose tissue in

obese individuals results in formation of an hypoxic environment surrounding adipocytes more distal to blood vessels. Consequently, the
adipose tissue releases angiogenic factors that circulate through the vasculature to combat the hypoxia. The hypoxic environment also
results in significant inflammation, which results in the secretion of proinflammatory cytokines. The secretion of proinflammatory cyto-
kines within the adipose tissue microenvironment may, in turn, alter the tissue-resident stem cells (ASCs). The production of angiogenic
factors, the secretion of inflammatory cytokines, and the perturbations to ASCs promote a microenvironment favorable for tumorigene-
sis and cancer progression. Abbreviation: ASCs, adipose stromal/stem cells.

TNF-o, and IL-6 [113]. These factors have been implicated in
prostate cancer tumorigenicity and metastasis [114-117].
Prostate cancer cells coinjected with ASCs into nude mice
caused increased tumor volume. The local delivery of oncosta-
tin M exacerbated the effect of ASCs on prostate cancer cell
proliferation and tumor volumes doubled in size [118]. Other
studies have shown that ASCs mediate their effects via the
SDF-1/CXCR4 axis. ASC-secreted SDF-1 increases the levels of
CXCR4 that result in a more aggressive prostate cancer cell
phenotype [101, 119]. ASCs have also been shown to increase
capillary density as evidenced by increased expression of
VEGF, basic fibroblast growth factor (FGF2), and CD31 [101,
120]. There is emerging evidence that suggests ASCs primed
with prostate cancer conditioned media can undergo neoplas-
tic transformation, and these ASCs form prostate-like neoplas-
tic lesions in vivo and produce aggressive tumors upon serial
transplantation [121]. Additional studies will be necessary to
determine the precise mechanism by which these primed
ASCs undergo neoplastic transformation.

OBESITY INDUCED ALTERATIONS TO ASCs

Studies have shown that ASCs isolated from obese women
have an increased potential to traffic to the tumor compared
to the ASCs isolated from lean women [77]. Furthermore,
studies investigating the impact of obesity on ASC have
observed increase recruitment of ASCs to the tumor in obese,
resulting in an increase in the number of circulating ASCs [77,
122]. Zhang et al. revealed that a higher number of ASCs
could be isolated from the WAT of obese mice compared to
lean mice, possibly due to increased volume of WAT in obese
mice [122]. These studies have shown that once localized to
the tumor microenvironment, the mobilized ASCs enhanced
the tumor vasculature by transdifferentiation into perivascular
cells and incorporating into the tumor microenvironment
[122]. With more ASCs recruited to the tumor site in obese
mice, the perivascular cells are able to provide oxygen and
nutrients to the tumor, enhancing survival and limiting apo-
ptosis of cancer cells (Fig. 2) [122]. Consistent with Zhang
et al., Bellows et al. found increased frequency of ASCs in
the circulation of obese patients, compared to lean patients
[123, 124].
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Additional studies have shown that ASCs from obese
women (obese ASCs) enhanced the proliferation of breast can-
cer cells in vitro (Fig. 2) [78]. Interestingly, this phenomenon
was restricted to ER" breast cancer cells, suggesting that ASCs
may act through an estrogen-mediated pathway [78]. These
obese ASCs also express higher levels of leptin when they are
stimulated with estrogen, suggesting an estrogen-mediated lep-
tin-response [78]. Inhibiting leptin expression using a leptin
neutralizing antibody reduced the impact of obese ASCs on
breast cancer cell proliferation in vitro [78]. Furthermore, obese
ASCs have been shown to alter the expression of several key
regulatory genes involved in the cell cycle, apoptosis, angiogen-
esis, EMT, and metastasis [78]. The expressions of these molec-
ular markers in breast cancer are associated with poorer
prognosis due to increased invasion and metastasis of breast
cancer cells to distant organs [125-129]. These studies suggest
the source of leptin within the microenvironment is the ASCs,
and robust secretion of leptin by ASCs can promote cancer cell
growth and progression.

Delivery of leptin to cancer cells either in vitro or in vivo
has also demonstrated increased proliferation, migration, inva-
sion, angiogenesis, and metastasis of the cells [130-132]. Pre-
neoplastic colon epithelial cells exposed to leptin upregulated
VEGF expression, resulting in VEGF-driven angiogenesis and
vascular development [133]. In breast cancer cells, leptin
functions through the JAK2-STAT3, PI3K-AKT, ERK1/2, and acti-
vator protein 1 (AP-1) pathways, increasing the expression of
proteolytic enzymes that are required in tumor growth,
metastasis, and neoangiogenesis [134-136]. In estrogen
receptor-positive human breast cancer cell lines, leptin has
been shown to exert its influence through the activation of
the MAPK pathway [136]. Thus, high levels of leptin resulting
from obesity may result in increased breast cancer incidence.
In addition, future research on this topic should provide clues
to the therapeutic potential of anti-leptin strategies.

CONCLUSIONS

Obesity is a major public health concern because it increases
the risk of several debilitating and deadly diseases, including
cancer [137]. While intense discussions on the mechanism(s)
by which obesity impacts cancer are ongoing, recent studies
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suggest that ASCs, altered by obesity, integrate into the tumor
stroma and provide support for the growing tumor. Numerous
genes are differentially expressed in ASCs isolated from obese
patients compared to those from lean patients. The data sug-
gest that ASCs isolated from obese patients have an increased
potential to assist cancer cells. Furthermore, the number of
circulating ASCs in obese patients was significantly higher
than in lean patients, which in turn may increase the oppor-
tunity for ASCs to home to tumors. Once recruited to the
growing tumor, ASCs isolated from obese women not only
produce a novel chemokine and cytokine repertoire but also
express higher levels of chemokines and cytokines that further
drive cancer cell proliferation and migration, tumor migration
and invasion, and metastasis to distant organs.

While the body of literature presented in this review pro-
vides insight into our current understanding of the ASCs in
the tumor stroma and the effects of obesity within this intri-
cate microenvironment, further investigations are required.
Future studies focused around the effects of obesity on ASCs

and understand how obesity primes the ASCs resulting in
increased tumorigenesis and/or metastasis will provide valua-
ble insight to reducing cancer morbidity and mortality. Studies
have also investigated the use of ASCs as vehicles for gene
therapy and have gained significant attention [138-140].
Therefore, it is essential to identify the mechanism(s) by
which ASCs influence cancer cells, since novel therapeutic tar-
gets can be developed to target ASCs and inhibit the growth
and metastasis of cancer cells.
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